← smac.pub home

RSDD-Time: Temporal Annotation of Self-Reported Mental Health Diagnoses

pdf arxiv bibtex data slides poster doi: 10.18653/v1/W18-0618 dblp: conf/acl-clpsych/MacAvaneyDCSYZG18 ACL: W18-0618 workshop paper dataset paper

Authors: Sean MacAvaney, Bart Desmet, Arman Cohan, Luca Soldaini, Andrew Yates, Ayah Zirikly, Nazli Goharian

Appeared in: Proceedings of the Fourth Workshop on Computational Linguistics and Clinical Psychology (CLPsych @ NAACL 2018)


Self-reported diagnosis statements have been widely employed in studying language related to mental health in social media. However, existing research has largely ignored the temporality of mental health diagnoses. In this work, we introduce RSDD-Time: a new dataset of 598 manually annotated self-reported depression diagnosis posts from Reddit that include temporal information about the diagnosis. Annotations include whether a mental health condition is present and how recently the diagnosis happened. Furthermore, we include exact temporal spans that relate to the date of diagnosis. This information is valuable for various computational methods to examine mental health through social media because one's mental health state is not static. We also test several baseline classification and extraction approaches, which suggest that extracting temporal information from self-reported diagnosis statements is challenging.

BibTeX @inproceedings{macavaney:clpsych2018-rsddtime, author = {MacAvaney, Sean and Desmet, Bart and Cohan, Arman and Soldaini, Luca and Yates, Andrew and Zirikly, Ayah and Goharian, Nazli}, title = {RSDD-Time: Temporal Annotation of Self-Reported Mental Health Diagnoses}, booktitle = {Proceedings of the Fourth Workshop on Computational Linguistics and Clinical Psychology}, year = {2018}, url = {https://arxiv.org/abs/1806.07916}, doi = {10.18653/v1/W18-0618}, pages = {168--173} }