A Deeper Look into Dependency-Based Word Embeddings

Sean MacAvaney and Amir Zeldes

To be presented at NAACL SRW 2018
Preprint: arxiv.org/abs/1804.05972
Word Embeddings

• Goal: Represent the meanings of words in a dense vector
 \[V_{\text{cat}} = [-0.182, -0.037, -0.166, -0.165, 0.013, \ldots, 0.028, -0.088, 0.113] \]

• Train a neural model that predicts a word given the words around it (or vise versa)
• Words with similar meanings should be located at a similar place in the embedding space

• Problem: How do you define word similarity?
Relatedness vs. Similarity

<table>
<thead>
<tr>
<th>Related terms: (topically similar)</th>
<th>Similar terms: (functionally similar)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hogwarts + Dumbledore</td>
<td>Hogwarts + Sunnydale</td>
</tr>
<tr>
<td>Camel + Hump</td>
<td>Camel + Bear</td>
</tr>
<tr>
<td>Physics + Proton</td>
<td>Physics + Chemistry</td>
</tr>
<tr>
<td>Ball + Bat</td>
<td>Ball + Bat</td>
</tr>
</tbody>
</table>

Functionally similar words can often fill the same slots in a sentence:
My major was _________ in college.
Dependency-Based Word Embeddings

• Levy and Goldberg (2014) challenged the practice of using linear term context windows when training word embeddings
• Embeddings trained with dependency context windows perform better at distinguishing similarity over relatedness
The first step is separating the milk into two parts. The one into solid curds and the other into liquid whey.
What’s in a dependency context?

- **Target term**
- **Linear context (n=3)**
- **Dependency context**
What’s in a dependency context?

• Many decisions to be made, though...
• Stanford vs Universal dependencies?

Are the English-specific Stanford Dependencies better or worse than the general Universal Dependencies?

(Levy and Goldberg (2014) only examined Stanford dependencies.)
What’s in a dependency context?

• Many decisions to be made, though...
• Levels of enhancement:
 • Are the words in the context labeled?

Curds

Unlabeled Context: “Basic” Context:
into:pobj-reverse
solid:amod
and:cc
whey:conj

into
solid
and
whey
What’s in a dependency context?

• Many decisions to be made, though...

• Levels of enhancement:
 • Are the words in the context labeled?
 • Any post-processing of dependency labels?

 Curds

 Simple Context:
 into: `mod-reverse`
 solid: `mod`
 and: `coord`
 whey: `coord`

 “Basic” Context:
 into: `pobj-reverse`
 solid: `amod`
 and: `cc`
 whey: `conj`

In simplified contexts, functionally similar dependency labels are collapsed.
What’s in a dependency context?

• Many decisions to be made, though...
• Levels of enhancement:
 • Are the words in the context labeled?
 • Any post-processing of dependency labels?

“Enhanced” dependencies: cross-lingual phenomena, e.g. conjoined subjects and case info.
What’s in a dependency context?

• Many decisions to be made, though...
• Levels of enhancement:
 • Are the words in the context labeled?
 • Any post-processing of dependency labels?

“Enhanced++” dependencies: English-tailored phenomena (e.g., partitive noun phrases).
Experiment

• Compare various types of dependency-based word embeddings to linear-context word embeddings
Experiment

• Compare various types of dependency-based word embeddings to linear-context word embeddings

• Use the CoreNLP dependency parser on a recent dump of Wikipedia (Nov 2017)

• Various evaluations:
 • How well do they rank similar words over related words?
 • What effect do they have on downstream tasks?
Similarity over Relatedness

• Given set of similar and related word pairs
 • Annotated WordSim-353 (Agirre et al., 2009)
 • Manually-curated (Chiarello et al., 1990)

• Measure area under precision-recall curve
Similarity over Relatedness

U Unlabeled U Simplified U Basic U Enhanced U Enhanced++
S Unlabeled S Simplified S Basic S Enhanced S Enhanced++

WS353 Chiarello

Levy and Goldberg
Similarity over Relatedness

![Bar Chart]

- U Unlabeled
- U Simplified
- U Basic
- U Enhanced
- U Enhanced++
- S Unlabeled
- S Simplified
- S Basic
- S Enhanced
- S Enhanced++
- CBOW, k=2
- CBOW, k=5
- Skip-Gram
- SG + Subword

Legend:
- Blue: WS353
- Orange: Chiarello
Ranked Similarity

• We also examined the rankings of similar words, and found the rankings to be comparable.
• E.g., ceiling-roof > ceiling-floor > ceiling-cathedral
Downstream Tasks

• Fixed embeddings – no training
• Two tasks (Bi-directional LSTM implementations):
 • Question type classification (TREC QC dataset) [1]
 • Named entity recognition (CoNLL NER dataset) [2]

Downstream Tasks - QC

![QC Accuracy](chart.png)

QC (Acc)
Downstream Tasks - NER
Conclusion

- Enhancing Universal dependencies can help distinguish similarity over relatedness (compared to previous work)
- Dependency-based word embeddings are valuable for some tasks
- Future work
 - More downstream tasks
 - Cross-lingual embeddings

- Questions?